Contents

Part I Three Physics Visions

1 **Notes on “Quantum Gravity” and Noncommutative Geometry**
J.M. Gracia-Bondía

1.1 Introduction

1.2 Gravity and Experiment: Expect the Unexpected
 1.2.1 Noncommutative Geometry I
 1.2.2 Whereto Diffeomorphism Invariance?

1.3 Gravity from Gauge Invariance in Field Theory
 1.3.1 Preliminary Remarks
 1.3.2 Exempi Gratiae
 1.3.3 The Free Lagrangian
 1.3.4 A Canonical Setting
 1.3.5 What to Expect
 1.3.6 Causal Gauge Invariance by Brute Force
 1.3.7 CGI at All Orders: Going for It
 1.3.8 Details on Quantization and Graviton Helicities
 1.3.9 Final Remarks
 1.3.10 Other Ways

1.4 The Unimodular Theories

1.5 The Noncommutative Connection
 1.5.1 Prolegomena
 1.5.2 Ironies of History
 1.5.3 Spectral Triples
 1.5.4 On the Reconstruction Theorem
 1.5.5 The Noncommutative Torus
 1.5.6 The Noncompact Case
 1.5.7 Nc Toric Manifolds (Compact and Noncompact)
 1.5.8 Closing Points
 1.5.9 Some Interfaces with Quantum Gravity

1.6 More on the “Cosmological Constant Problem” and the Astroparticle Interface

References
Contents

2 Quantum Gravity as Sum over Spacetimes

J. Ambjørn, J. Jurkiewicz and R. Loll

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>2.2 CDT</td>
<td>66</td>
</tr>
<tr>
<td>2.3 Numerical Results</td>
<td>74</td>
</tr>
<tr>
<td>2.3.1 The Emergent de Sitter Background</td>
<td>75</td>
</tr>
<tr>
<td>2.3.2 Fluctuations Around de Sitter Space</td>
<td>79</td>
</tr>
<tr>
<td>2.3.3 The Size of the Universe and the Flow of G</td>
<td>83</td>
</tr>
<tr>
<td>2.4 Two-Dimensional Euclidean Quantum Gravity</td>
<td>87</td>
</tr>
<tr>
<td>2.4.1 Continuum Formulation</td>
<td>87</td>
</tr>
<tr>
<td>2.4.2 The Lattice Regularization</td>
<td>89</td>
</tr>
<tr>
<td>2.4.3 Counting Graphs</td>
<td>93</td>
</tr>
<tr>
<td>2.4.4 The Continuum Limit</td>
<td>98</td>
</tr>
<tr>
<td>2.5 Two-Dimensional Lorentzian Quantum Gravity</td>
<td>102</td>
</tr>
<tr>
<td>2.6 Matrix Model Representation</td>
<td>109</td>
</tr>
<tr>
<td>2.6.1 The Loop Equations</td>
<td>112</td>
</tr>
<tr>
<td>2.6.2 Summation over All Genera in the CDT Matrix Model</td>
<td>116</td>
</tr>
<tr>
<td>2.7 Discussion and Perspectives</td>
<td>119</td>
</tr>
</tbody>
</table>

3 Lectures on Quantization of Gauge Systems

N. Reshetikhin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>3.2 Local Lagrangian Classical Field Theory</td>
<td>127</td>
</tr>
<tr>
<td>3.2.1 Space – Time Categories</td>
<td>127</td>
</tr>
<tr>
<td>3.2.2 Local Lagrangian Classical Field Theory</td>
<td>128</td>
</tr>
<tr>
<td>3.2.3 Classical Mechanics</td>
<td>128</td>
</tr>
<tr>
<td>3.2.4 First-Order Classical Mechanics</td>
<td>129</td>
</tr>
<tr>
<td>3.2.5 Scalar Fields</td>
<td>130</td>
</tr>
<tr>
<td>3.2.6 Pure Euclidean d-Dimensional Yang–Mills</td>
<td>131</td>
</tr>
<tr>
<td>3.2.7 Yang–Mills Field Theory with Matter</td>
<td>131</td>
</tr>
<tr>
<td>3.2.8 Three-Dimensional Chern–Simons Theory</td>
<td>132</td>
</tr>
<tr>
<td>3.3 Hamiltonian Local Classical Field Theory</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1 The Framework</td>
<td>133</td>
</tr>
<tr>
<td>3.3.2 Hamiltonian Formulation of Local Lagrangian Field Theory</td>
<td>134</td>
</tr>
<tr>
<td>3.4 Quantum Field Theory Framework</td>
<td>137</td>
</tr>
<tr>
<td>3.4.1 General Framework of Quantum Field Theory</td>
<td>137</td>
</tr>
<tr>
<td>3.4.2 Constructions of Quantum Field Theory</td>
<td>138</td>
</tr>
<tr>
<td>3.5 Feynman Diagrams</td>
<td>141</td>
</tr>
<tr>
<td>3.5.1 Formal Asymptotic of Oscillatory Integrals</td>
<td>141</td>
</tr>
<tr>
<td>3.5.2 Integrals Over Grassmann Algebras</td>
<td>146</td>
</tr>
<tr>
<td>3.5.3 Formal Asymptotics of Oscillatory Integrals Over Super-manifolds</td>
<td>149</td>
</tr>
<tr>
<td>3.5.4 Charged Fermions</td>
<td>152</td>
</tr>
</tbody>
</table>
4.5.5 General Structure of Heat Kernel Coefficients 234
4.6 High-Energy Approximation .. 236
4.7 Low-Energy Approximation ... 238
4.7.1 Algebraic Approach ... 239
4.7.2 Covariantly Constant Background in Flat Space 241
4.7.3 Homogeneous Bundles over Symmetric Spaces 245
4.8 Low-Energy Effective Action in Quantum General Relativity .. 255
References ... 258

5 Lectures on Cohomology, T-Duality, and Generalized Geometry . 261
P. Bouwknegt
5.1 Cohomology and Differential Characters 261
5.1.1 A Brief Review of de Rham and Čech Cohomology 262
5.1.2 Electromagnetism ... 264
5.1.3 The Čech – de Rham Complex 267
5.1.4 Differential Cohomologies ... 270
5.2 T-Duality ... 276
5.2.1 Introduction to T-Duality ... 276
5.2.2 The Buscher Rules ... 277
5.2.3 Gysin Sequences and Dimensional Reduction 282
5.2.4 T-Duality = Takai Duality ... 285
5.2.5 T-Duality as a Duality of Loop Group Bundles 287
5.3 Generalized Geometry .. 290
5.3.1 Cartan Relations .. 291
5.3.2 Lie Algebroids ... 292
5.3.3 Generalized Geometry ... 293
5.3.4 Courant Algebroids .. 297
5.3.5 Generalized Complex Geometry 303
5.3.6 T-Duality in Generalized Geometry 307
References ... 309

6 Stochastic Geometry and Quantum Gravity: Some Rigorous Results . 313
H. Zessin
6.1 An Axiomatic Introduction into Regge’s Model 314
6.2 The Zero-Infinity Law of Stochastic Geometry and the Cluster Process 316
6.2.1 Basic Concepts ... 316
6.2.2 Cluster Properties and the Zero-Infinity Law of Stochastic Geometry ... 317
6.2.3 Cluster Properties and the Zero-Infinity Law for Marked Configurations .. 319
6.2.4 The Cluster Process ... 320
6.2.5 The Poisson Process P_ρ .. 322
6.3 Poisson–Delaunay Surfaces with Intrinsic Random Metric 323
6.3.1 The Delaunay Cluster Property 323
Contents

6.3.2 Poisson–Delaunay Surfaces .. 326
6.3.3 Scholion: The Voronoi Cluster Property 327
6.4 Ergodic Behaviour of PD-Surfaces 328
 6.4.1 Palm Measures and Palm Distributions 328
 6.4.2 An Ergodic Theorem for Intrinsic Metric Quantities of Stationary Random Surfaces 329
 6.4.3 Curvature Properties of the Poisson–Delaunay Surface 331
6.5 The Two-Dimensional Regge Model of Pure Quantum Gravity ... 333
6.6 Comments and Final Dreams .. 334
References ... 335

Part III Afterthoughts

7 Steps Towards Quantum Gravity and the Practice of Science: Will the Merger of Mathematics and Physics Work? 339
 B. Booß-Bavnbek
 7.1 Regarding the Need and the Chances of Unification 339
 7.2 The Place of Physics in John Dee’s Groundplat of Sciences and Artes, Mathematicall of 1570 340
 7.3 Delimitation Between Mathematics and Physics 341
 7.4 Variety of Modelling Purposes 342
 7.4.1 Production of Data, Model-Based Measurements 342
 7.4.2 Simulation ... 343
 7.4.3 Prediction ... 343
 7.4.4 Control .. 344
 7.4.5 Explain Phenomena 345
 7.4.6 Theory Development 346
 7.5 “The Trouble with Physics” 347
 7.6 Theory–Model–Experiment 347
 7.6.1 First Principles .. 348
 7.6.2 Towards a Taxonomy of Models 348
 7.6.3 The Scientific Status of Quantum Gravity as Compared to Medicine and Economics 350
 7.7 General Trends of Mathematization and Modelling 351
 7.7.1 Deep Divide .. 351
 7.7.2 Charles Sanders Peirce’s Semiotic View 351
References ... 353

Index ... 355